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SUMMARY

We present a multilayer Saint-Venant system for the simulation of 3D free surface flows with friction
and viscosity effects. A vertical discretization of a Navier–Stokes system approximation deduced from a
precise analysis of the shallow water assumption leads to a set of coupled Saint-Venant-type systems. The
idea is to obtain an accurate description of the vertical profile of the horizontal velocity while preserving
the robustness and the computational efficiency of the usual Saint-Venant system.

For each time-dependent layer, a Saint-Venant-type system is solved on the same 2D mesh by a kinetic
solver using a finite volume framework. The free surface is directly deduced from the sum of layers water
depth.

We validate the model with some numerical academic and realistic examples. We present comparisons
with simulations computed with the hydrostatic Navier–Stokes solver of the Telemac-3D code developed
by Electricité de France. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we present a multilayer Saint-Venant system for the simulation of 3D free surface
flows with friction and viscosity effects. The idea is to introduce, when the hydrostatic assumption
is valid, an alternative to the solution of the free surface Navier–Stokes system, leading to a precise
description of the vertical profile of the horizontal velocity while preserving the robustness and
the computational efficiency of the usual Saint-Venant system.

This study generalizes the work of Audusse [1] who has developed a model based on the 1D
Saint-Venant system for problems with flat bottom.
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The multilayer Saint-Venant system is deduced from the Navier–Stokes system by two steps:

• the shallow water assumption leading to the hydrostatic Navier–Stokes model;
• the vertical discretization of the flow domain and the vertical integration of this model on
each layer.

For the first step, we refer to the study by Ferrari and Saleri [2] who have generalized the work
of Gerbeau and Perthame [3] to 3D problems with slow varying bottom. For the second step, we
only give the 2D result which is analogous to the one based on the 1D Saint-Venant system proved
in [1].

Once the model is established, we emphasize in this paper the numerical approximation of
the multilayer Saint-Venant system for the simulation of 3D flows, discussing with details the
numerical implementation. The coupled Saint-Venant systems are solved by a kinetic solver on a
finite volume discretization.

The free surface Navier–Stokes computations, which have to deal with a 3D moving mesh, are
rather expensive. Here, we only use a 2D mesh, the time-dependent layers being managed by the
Saint-Venant-type equations. The same idea has been applied in [4] with non-conservative Saint-
Venant systems discretized by finite elements. Also the bi-fluid shallow water problem considered
in [5] is treated as a two-layer flow.

We show on some example a comparison of the two approaches, multilayer system and hydro-
static Navier–Stokes equations. For the Navier–Stokes simulations we use the Telemac-3D code
developed by Electricité de France (EDF) (see [6, 7]).

The outline of the paper is as follows. In Section 2, we recall the incompressible Navier–Stokes
equations, the boundary conditions and the hydrostatic approximation. The multilayer Saint-Venant
system obtained by a vertical discretization of the hydrostatic model is described in Section 3. The
numerical scheme is presented in Section 4 and the boundary conditions in Section 5. In Section 6,
we give some details on the postprocessing step. Numerical examples are shown in Section 7. The
first one is academic so that we can compare precisely the solutions of the proposed multilayer
system and of a hydrostatic Navier–Stokes code. The second one is realistic and aims to prove the
robustness of the scheme.

2. NAVIER–STOKES EQUATIONS AND HYDROSTATIC APPROXIMATION

2.1. Navier–Stokes equations

We consider the classical incompressible Navier–Stokes system

∇ · U= 0 (1)

�U
�t

+ ∇ · (U ⊗ U) = ∇ · � + g (2)

with the stress tensor � given by

� =−pId + �[∇U + (∇U)T] (3)

and where U(t, x, y, z) = (u, v, w)T is the velocity, u(t, x, y, z) = (u, v)T is the horizontal velocity,
p is the pressure, g= (0, 0,−g)T represents the gravity forces and � is the viscosity coefficient.
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Figure 1. Flow domain.

We consider a free surface flow (see Figure 1), therefore we assume

Z(x, y)�z�H(t, x, y) = h(t, x, y) + Z(x, y)

with Z(x, y) the bottom elevation and h(t, x, y) the water depth.
On the bottom we prescribe an impermeability condition

U · n= 0 (4)

and a friction condition given by a Navier law

(� · n) · ti = −�U · ti , i = 1, 2 (5)

with � a Navier coefficient, n the unit outward normal and (ti , i = 1, 2) two tangential vectors.
For some applications, we rather use the Strickler friction and Equation (5) is then replaced by

(� · n) · ti =−K (h,U) U · ti , i = 1, 2 (6)

where K (h,U) = (g/S2h1/3)‖U‖ with S the Strickler coefficient.
On the free surface, the kinematic boundary condition is satisfied

�H
�t

+ u(t, x, y, H) · ∇H − w(t, x, y, H) = 0 (7)

and the no-stress condition

r · n= 0 (8)

On solid walls, we prescribe a slip condition

U · n= 0 (9)

We complete this system with some initial conditions

h(0, x, y)= h0(x, y), U(0, x, y, z) =U0(x, y, z)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:331–350
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2.2. Hydrostatic model

We introduce the shallow water assumption. For this purpose we consider two characteristic
dimensions H and L in the vertical and horizontal directions respectively and we assume
that H is small compared to L, so we can write � =H/L with � a small parameter. We
also assume a slow-varying bottom [2]. We introduce dimensionless variables and we obtain a
dimensionless Navier–Stokes system (see [1, 2, 8]). By an asymptotic analysis, we deduce the
approximation at zero order in � of system (1)–(9) which gives the horizontally inviscid hydrostatic
model

∇ · U= 0 (10)

�u
�t

+ ∇ · (u ⊗ u) + �uw

�z
+ ∇ p= �

�2u
�z2

(11)

�p
�z

= −g (12)

with the boundary conditions

w(t, x, y, Z(x, y))= 0 (13)

�
�u
�z

(t, x, y, Z(x, y))= �u(t, x, y, Z(x, y)) (14)

�u
�z

(t, x, y, H(t, x, y))= 0 (15)

p(t, x, y, H(t, x, y))= 0 (16)

The system is still associated with the kinematic boundary condition (7).
Taking into account the pressure boundary condition on the free surface (16), Equation (12) is

equivalent to

p(t, x, y, z) = g(H(t, x, y) − z) (17)

3. A MULTILAYER SAINT-VENANT SYSTEM

3.1. Multilayer system

In order to define a vertical discretization of system (10)–(16), we introduce a discretization of the
water domain in the z direction (see Figure 2). For some M ∈ N we define M intermediate water
heights H�(t, x, y) such that

0= H0(t, x, y)�H1(t, x, y)�H2(t, x, y)� · · ·�HM−1(t, x, y)�HM (t, x, y)= h(t, x, y)

Then for each layer we define its water height h�(t, x, y) by

∀� ∈ {1, M}, h�(t, x, y)= H�(t, x, y) − H�−1(t, x, y)
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Figure 2. Water domain discretization in the z direction.

and so
M∑

�=1
h� (t, x, y)= h(t, x, y)

We assume that the interfaces are advected by the flow.
We also define an average horizontal velocity U�(t, x, y) by

∀� ∈ {1, M}, U�(t, x, y) = 1

h�(t, x, y)

∫ H�

H�−1

u(t, x, y, z) dz (18)

The 1D theorem analogous to the following has been proved in [1].
Theorem 3.1
The multilayer Saint-Venant system with friction defined by

�h�

�t
+ ∇ · (h�U�) = 0 (19)

�h�U�

�t
+ ∇ · (h�U� ⊗U�) + gh�∇h

=−gh�∇Z − ��U� + 2��
U�+1 − U�

h�+1 + h�

− 2��−1
U� − U�−1

h� + h�−1
for � = 1, . . . , M (20)

with

�� =
{

� if � = 1
0 if � �= 1

, �� =
⎧⎨
⎩
0 if � = 0
� if � = 1, . . . , M − 1
0 if � = M
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results from a formal asymptotic approximation in O(�), coupled with a vertical discretization, of
the hydrostatic model and therefore of the Navier–Stokes equations.

Remark
It is noticeable that, thanks to the kinematic boundary condition at each interface, the vertical
velocity is no more a variable of system (20). This is an advantage of this formulation over the
hydrostatic model where the vertical velocity is needed in the momentum equation (11) and is
deduced from the incompressibility condition (10). Here it is deduced from the same condition
(see Section 6.2) but it is decoupled, it is already the case for the Saint-Venant system [3].

The multilayer Saint-Venant system satisfies some fundamental properties (see [1]). We only
mention here that the multilayer system (19)–(20) preserves the positivity of the water height in
each layer. It also preserves the steady state of still water, i.e. h + Z =Cst,u= 0. When Z =Cst ,
the total momentum is conserved.

3.2. Conservative form

However, the formulation of the multilayer system (19)–(20) has two main drawbacks. The pressure
terms h�∇h are not in a conservative form and thus their definition is not obvious in the presence of
shocks. Several definitions of these non-conservative products have been proposed [9] depending
on which discontinuities to reproduce. Here the outcome is to preserve the above properties and
stability.

In addition, if we consider a two-layer system satisfying

U�(t, x, y)=U(t, x, y) + O(�) ∀� = 1, 2 (21)

we verify (see [1]) that this two-layer system is not hyperbolic.
This has motivated in [1] the following new set-up of the same system with a conservative form

of the left-hand side:

�h�

�t
+ ∇ · (h�U�) = 0 (22)

�h�U�

�t
+ ∇(h�U� ⊗ U�) + g

2
∇(h�h)

=g

2
h2∇

(
h�

h

)
− gh�∇Z − ��U� + 2��

U�+1 − U�

h�+1 + h�

− 2��−1
U� − U�−1

h� + h�−1
for � = 1, . . . , M (23)

If we denote X� = (h�,q�)
T with q� = h�U� or q� = (q�,x , q�,y)

T, system (22)–(23) can be
written:

�X�

�t
+ ∇ · F(h,X�) =Bp(h,X�) + Bz(X�) + Bv(X�−1,X�,X�+1) for � = 1, . . . , M (24)
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with

F(h,X�) =

⎛
⎜⎜⎜⎜⎜⎜⎝

q�,x q�,y

q2�,x

h�
+ g

2
h�h

q�,xq�,y

h�

q�,xq�,y

h�

q2�,y

h�
+ g

2
h�h

⎞
⎟⎟⎟⎟⎟⎟⎠

(25)

Bp(h,X�) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

g

2
h2�x

(
h�

h

)

g

2
h2�y

(
h�

h

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bz(X�) =

⎛
⎜⎜⎝

0

−gh��x Z

−gh��y Z

⎞
⎟⎟⎠ (26)

and

Bv(X�−1,X�,X�+1) =
⎛
⎜⎝

0

−��U� + 2��
U�+1 − U�

h�+1 + h�
− 2��−1

U� − U�−1

h� + h�−1

⎞
⎟⎠ (27)

4. NUMERICAL SCHEME

In this section, we detail the space and time discretization of system (24)–(27).

4.1. Time discretization

With �t the time step, knowing the solution (Xn
�, � = 1, . . . , M) at time tn = n�t , we compute

the solution at time tn+1 with an explicit treatment of the hyperbolic part (left-hand side), the
non-conservative pressure source term Bp and the bottom topography term Bz , and with an implicit
treatment of the viscous and friction terms Bv , so that the scheme is written

Xn+1
� − Xn

�

�t
+ ∇ · F(hn,Xn

�) =Bp(h
n,Xn

�) + Bz(Xn
�) + Bv(X

n+1
�−1,X

n+1
� ,Xn+1

�+1) (28)

We note that hn+1
� is obtained explicitly since the first component of Bv is 0 and that Un+1

� is the
solution of a tridiagonal M × M linear system (see [1] for details of the matrix terms).

4.2. Space discretization

Concerning the space discretization, we consider finite volumes defined on an unstructured mesh.
We recall here the general formalism of finite volumes. Let Th be a triangulation of the com-
putational domain which vertices are denoted Pi . The dual cells Ci are obtained by joining the
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Figure 3. Dual cell Ci .

centres of mass of the triangles surrounding each vertex Pi . We use the following notations (see
Figure 3):

• Ki , set of subscripts of nodes Pj surrounding Pi ;
• |Ci |, area of the cell Ci ;
• Ti , set of triangles Tk having Pi as a node;
• |Tk |, area of the triangle Tk ;
• �i j , boundary edge between the cells Ci and C j ;
• Li j , length of �i j ;
• ni j , unit normal to �i j , outward to Ci (n j i = −ni j ).

We denote by Xn
�,i = (hn�,i ,q

n
�,i ) an approximation of the cell average of the solution at time tn .

The space discretization of system (28) gives after integration on the cell Ci

Xn+1
�,i + �tBv(X

n+1
�−1,i ,X

n+1
�,i ,Xn+1

�+1,i ) =Xn
�,i − ∑

j∈Ki

�i j F(hni j , h
n
ji ,X

n
�,i j ,X

n
�, j i ,ni j )

+ �tSp,i (h
n,Xn

�, (h
n
i j , j ∈ Ki ))

+ ∑
j∈Ki

�i jSz(hni , h
n
i j ,X

n
�,i ,X

n
�,i j ,ni j ) (29)

with �i j = �t Li j/|Ci |.
We develop in the following subsections the definition of the different terms of the right-hand

side of Equation (29).

4.3. Flux term

For the hyperbolic part, the term F(hi j , h ji ,X�,i j ,X�, j i ,ni j ) denotes an interpolation of the
normal component of the flux F(h,X�) ·ni j (appearing after integration by parts of the divergence
term) along the edge �i j . The fluxes at the interfaces are computed by a kinetic solver analogous
to the one described in detail in [10] for the Saint-Venant system. Here the Gibbs equilibrium for
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the layer � is

M�(t, x, y, �) = h�(t, x, y)

c2(t, x, y)
�

(
� − U�(t, x, y)

c(t, x, y)

)
(30)

with

c(t, x, y)=
√
gh(t, x, y)

2

and the notations defined in [10]. This has the advantage of simple explicit formulas that are very
stable (both theoretically and numerically). But other choices of the solver could be used as well
here [11].

The interface values hi j , h ji ,X�,i j ,X�, j i are defined in the next subsection in such a way that
the bottom topography term preserves the steady state of still water.

4.4. Topography term

The interface values hi j , h ji ,X�,i j ,X�, j i are computed using the hydrostatic reconstruction pro-
posed in [12]. The different steps are as follows.

We define:

• a piecewise constant approximation of the bottom topography Z(x, y)

Zi = 1

|Ci |
∫
Ci

Z(x, y) dxdy (31)

• an interface topography (we denote by Zi j , Z ji the values at the interface between nodes Pi
and Pj )

Zi j = Z ji = max(Zi , Z j ) (32)

• a hydrostatic reconstructed total water depth

hi j = (hi + Zi − Zi j )+ (33)

• a proportional reconstructed water depth for each layer

h�,i j = h�,i
hi j
hi

and q�,i j = h�,i jU� (34)

Then, we define the term Sz(hi , hi j ,X�,i ,X�,i j ,ni j ) (which is an approximation by interface
of the bottom source term Bz) by the formula

Sz(hi , hi j ,X�,i ,X�,i j , ni j ) =
⎛
⎝ 0

g

2
(h�,i j + h�,i )(hi j − hi )ni j

⎞
⎠ (35)

Following [10], we can prove that scheme (29) preserves the still water steady state.
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4.5. Non-conservative pressure term

To complete the definition of the scheme given by (29), it remains to define the term Sp,i (h,X�,

(hi j , j ∈ Ki )) which is an approximation of the non-conservative source term of the right-hand
side Bp defined in (26).

As we have node values for h�/h, we can consider a piecewise linear approximation on the
triangles and we denote ∇(h�/h)|Tk the constant gradient on each triangle surrounding the node
Pi . Then, we define a centred approximation of the gradient term by a weighted average

∇
(
h�

h

)∣∣∣∣
i

= 1∑ |Tk |
∑

Tk∈Ti

|Tk | ∇
(
h�

h

)∣∣∣∣
Tk

(36)

For consistency with the other terms, we use for the approximation of h2 the reconstructed water
depth hi j but, as it is defined by interface, we use as node value the minimum of the surrounding
values, so we obtain the following formula:

Sp,i (h,X�, (hi j , j ∈ Ki ))=

⎛
⎜⎜⎝

0

g

2
min
j∈Ki

(h2i j )∇
(
h�

h

)∣∣∣∣
i

⎞
⎟⎟⎠ (37)

5. BOUNDARY CONDITIONS

Concerning the boundary conditions we refer mainly to [13] where the treatment of the boundary
conditions for the shallow water equations is detailed. The idea is to deduce from the boundary
conditions the values to be prescribed for the variables on a fictitious outside cell, and thus to be
able to apply the scheme at the boundary nodes (in order to preserve the properties of the scheme
at these nodes). We explain here how these conditions can be generalized to deduce boundary
conditions for each layer of the multilayer system, since only global conditions are generally given
at the fluid boundaries.

5.1. Inflow boundary

As an example we assume that a global inflow flux Qg is given.
For each boundary node, we assume a one-layer model and we deduce the values he,i ,Ue,i on

the fictitious outside cell using the algorithm proposed in [13] and based on the conservation of
the outgoing Riemann invariant. Then, we prescribe

he,�,i = he,i
M

for � = 1, . . . , M (38)

For the velocity components, we assume either a constant velocity along the vertical direction, i.e.
Ue,�,i =Ue,i , or a parabolic vertical profile. In the last case, the parabolic profile ui (z) is defined
by the three conditions (we use (14), (15)):

�ui
�z

(z) = 0 for z = he,i (39)
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�ui
�z

(z) = kui (z) for z = 0 with k = �/� (40)

∫ he

0
ui (z) dz = he,iUe,i (41)

and we define

Ue,�,i =
∫ �he,�,i

(�−1)he,�,i
ui (z) dz (42)

5.2. Outflow boundary

For the outflow boundary, a usual condition is to prescribe the water depth hg.
As in the previous case, we assume a one-layer model and we compute the values he,i ,Ue,i to

be prescribed on the fictitious outside cell. Then, for each layer, we prescribe

he,�,i = h�,i
he,i
hi

, Ue,�,i =U�,i
Ue,i

Ui
(43)

where Ui is the average value of velocity for the total water depth

Ui = 1

hi

M∑
�=1

h�,iU�,i (44)

5.3. Slip condition

On a solid wall the slip condition

U�,i · ni = 0 (45)

is prescribed weakly (see [13]) for each layer.

6. POSTPROCESSING COMPUTATIONS

6.1. 3D outputs

The computation of the solution of the multilayer system deals only with the 2D mesh, but for
the output plottings, it is easier to define the velocity components at the nodes of a 3D mesh and
then to use linear interpolation for the isovalues. From the 2D mesh, the bottom data and the
water depth of each layer we deduce a 3D mesh made of prisms which can then be divided into a
tetrahedra. Along the vertical direction the nodes of the 3D mesh are located at the bottom, at the
middle of each layer and at the free surface (see Figure 4). We assign to the nodes Pi,� in the layer
� the value of the horizontal velocity U�,i = (U�,i , V�,i )

T. The values of the horizontal velocity
at the bottom (denoted (U0,i , V0,i )T) and at the free surface (UM+1,i , VM+1,i )

T are computed by
linear extrapolation along the vertical direction.
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6.2. Vertical velocity

The vertical velocity is not a variable of the multilayer system, nevertheless, it may be interesting
to compute it for the outputs and the comparisons with Navier–Stokes solutions. It is deduced
from the impermeability condition (4) at the bottom and the integration along the z-axis of the
incompressibility condition (1).

We define ni = (nx,i , ny,i , nz,i )T, the unit normal at each node of the bottom, by an average
(weighted by the areas of the faces) of the surrounding face normals, then the vertical velocity is
defined at each node of the bottom by

W0,i =− 1

nz,i
(U0,i nx,i + V0,i ny,i ) (46)

The incompressibility condition implies for the continuous variables

w(x, y, z) =w(x, y, Z) −
z∫

Z

(
�u
�x

+ �v

�y

)
dz (47)

thus, for the discrete variables, we write

W�,i =W0,i −
�−1∑
k=1

hk,i

(
�Uk

�x

∣∣∣∣
i
+ �Vk

�y

∣∣∣∣
i

)
− h�,i

2

(
�U�

�x

∣∣∣∣
i
+ �V�

�y

∣∣∣∣
i

)
(48)

where

�Uk

�x

∣∣∣∣
i

= 1∑ |Tj |
∑

Tj∈Ti

|Tj | �Uk

�x

∣∣∣∣
Tj

(49)

with (�Uk/�x)|Tj the constant x-derivative by triangle of Uk considered as piecewise linear.

6.3. Wet-dry interface

It is not necessary to define the position of the wet–dry interface for the computations since the
scheme can deal with cells where the water depth is zero. However, for CPU time savings, it may
be interesting to avoid the flux computation for the cell interfaces with zero water depth on each
side.

Nevertheless, since the computational variable is the discharge q�,i and the velocity is needed
for the computation of (29), we have to introduce a threshold value �h in order to define the
velocity everywhere. Therefore, we set

U�,i =
⎧⎨
⎩

q�,i

h�,i
if h�,i��h

0 else
(50)

7. NUMERICAL RESULTS

We consider two types of test cases, an academic one and a realistic one, and for the two cases
we present comparisons with Navier–Stokes solutions. We compare the results obtained with
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Figure 4. Flow over a bump. The 3D mesh for the postprocessing.

Figure 5. Horizontal velocities (S = 30): (a) multilayer Saint-Venant model and
(b) hydrostatic Navier–Stokes model.

Figure 6. Vertical velocities (S = 30): (a) multilayer Saint-Venant model and
(b) hydrostatic Navier–Stokes model.
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Figure 7. Free surface comparisons: multilayer Saint-Venant model (solid line) and hydrostatic
Navier–Stokes model (tinted line).

Figure 8. Vertical profiles of horizontal velocity: Comparison of the multilayer (crosses) and of
the hydrostatic Navier–Stokes (continuous lines) solutions: (a) x = 10; (b) x = 15; and (c) x = 20.

the multilayer system described above and the hydrostatic Navier–Stokes solver ‘Telemac-3D’
described in [6, 7]. The main ingredients of the Telemac-3D solver are finite elements, operator
splitting, semi-implicit scheme and � transformation (A.L.E. type transformation) along the vertical
axis.
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Figure 9. Multilayer Saint-Venant model (S = 50): (a) horizontal velocity and (b) vertical velocity.

Figure 10. Malpasset: topography and initial solution.

7.1. Transcritical flow over a bump

We consider the classical test of a stationary transcritical flow over a parabolic bump. The geometric
data are the following: channel length≈ 21m, channel width≈ 2m, bump length≈ 5.75m, bump
height ≈ 0.2m. At the inflow boundary, the given discharge is 2m3/s and at the outflow the
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Figure 11. Malpasset: multilayer Saint-Venant model. Water depth at t = 2500 s.

Figure 12. Malpasset: hydrostatic Navier–Stokes model. Water depth at t = 2500 s.

prescribed water depth is 0.6m. The vertical viscosity is 10−2 m2/s and the Strickler coefficient
is 30.

The results shown in Figures 5–8 have been obtained with six layers along the vertical axis
(1452 nodes, 2620 triangles for the 2D mesh). Figure 4 shows the 3D mesh built for the multilayer
outputs as described in Section 6.1 (as we have half a layer at the bottom and at the free surface,
this 3D mesh has seven layers). For the hydrostatic Navier–Stokes results, we use the six layers
3D mesh used for the computation.
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Figure 13. Malpasset: zoom of the downstream area. Multilayer Saint-Venant model.
Water level and mean velocity at t = 2500 s.

Figure 14. Malpasset: zoom of the downstream area. Hydrostatic Navier–Stokes model.
Water level and mean velocity at t = 2500 s.

We compare in Figures 5–6 the horizontal and vertical components of the velocity. In Figure 8,
we compare the vertical profiles of the horizontal velocity at different positions. We can see the
good agreement of the results obtained with the two different models though the approximation
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Figure 15. Malpasset: zoom of the upstream area. Water depth and mean velocity at t = 2500 s.

of the velocities are different (constant by layer or piecewise linear). The CPU times are 10min
for the multilayer and 33min for the hydrostatic Navier–Stokes solver.

To show the effect of the friction coefficient, we have done a computation with the same data
except the Strickler coefficient is now 50. The horizontal and vertical velocities are presented in
Figure 9. As the friction is less important, the jump is further after the bump.

7.2. Malpasset

The second test problem is a real-life application, it concerns the Malpasset dam break. The
circumstances of the event, the data of the numerical simulation and a solution by a Saint-Venant
model are described in [14]. A comparison between Saint-Venant and Navier–Stokes solutions is
also shown in [15]. This problem is a good example to test the ability of the codes to treat wet–dry
interfaces and still water (the sea area before the wave reaches it).

The 2D mesh has 13 541 nodes and 26 000 triangles and the results shown have been obtained
with four layers along the vertical direction. The vertical viscosity is 0.1m2/s and the Strickler
coefficient is 30. Figure 10 presents the topography and the initial solution (water level), the
maximum initial water depth is approximately 50m, the initial water level upstream of the dam is
100m and we assume that the river bed downstream of the dam is dry.

Figures 11 and 12 compare the water depth at t = 2500 s obtained by the two models, we can
see that the two results are close. We show in Figures 13 and 14 a zoom of the downstream area
with the water level and the mean velocity. The results are similar with small discrepancies near
the wet–dry interface. The solution obtained with the multilayer is more regular. The CPU times
are about 130min for the multilayer and 400min for the hydrostatic Navier–Stokes solver.

Finally, we show some details of the solution obtained with the multilayer Saint-Venant model.
In Figure 15 a zoom of the upstream area with the water depth and the mean velocity is presented,
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Figure 16. Malpasset, velocity fields: (a) bottom and (b) free surface.

we note that some water is left in the small basins of the topography. For the downstream area, we
compare in Figure 16 the velocity field at the bottom and the free surface highlighting the effect
of the friction at the bottom.

8. CONCLUSIONS

We have proposed an alternative solution method for the simulation of 3D hydrostatic free surface
flows based on Saint-Venant-type systems, which has the main advantage of avoiding to manage
a 3D moving mesh. The multilayer model preserves the interesting properties of the kinetic solver
applied to the Saint-Venant equations, particularly the water depth positivity and the still water
equilibrium. The numerical examples show that we obtain a robust solution method able to deal
easily with wet–dry interfaces.
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éléments finis. Presses des Ponts et Chaussées: Paris, 2003 (in French).
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